서지주요정보
The new physical optics notebook: tutorials in Fourier optics [electronic resource]
서명 / 저자 The new physical optics notebook [electronic resource] : tutorials in Fourier optics / George O. Reynolds ... [et al.].
발행사항 Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA) : SPIE, c1989.
Online Access https://doi.org/10.1117/3.2303 URL

서지기타정보

서지기타정보
청구기호 QC395.2 .N48 1989
형태사항 1 online resource (xvi, 572 p. : ill.) : digital file.
총서명 SPIE Press monograph ; PM01
언어 English
일반주기 "SPIE digital library."
Copublished by SPIE The International Society for Optical Engineering and American Institute of Physics".
Rev. ed. of: Physical optics notebook / George B. Parrent, Brian J. Thompson.
서지주기 Includes bibliographical references and index.
내용 Preface -- Chapter 1. Huygens' principle. 1.1. Light as a wave disturbance; 1.2. Wave propagation; References -- Chapter 2. Fourier transforms. 2.1. Introduction; 2.2. Diffraction problems; 2.3. Conclusion -- Chapter 3. Array theorem. 3.1. Introduction; 3.2. The array theorem; 3.3. Applications of array theorem; 3.4. Some examples; 3.5. Appendix: The convolution theorem; Reference -- Chapter 4. Image formation: the impulse response. 4.1. Introduction; 4.2. Impulse response; 4.3. Image of a point object; 4.4. Conclusions; 4.5. Appendix: The relationship to geometrical optics -- Chapter 5 Image formation in terms of the impulse response. 5.1. Introduction; 5.2. Impulse response for a cylindrical lens; 5.3. Image of a bar; 5.4. Image of two bars; 5.5. Image of three bars; 5.6. Experimental illustrations; Reference -- Chapter 6. Resolution in terms of the impulse response. 6.1. Introduction; 6.2. Two-point resolution; 6.3. Image of two points: one dimensional; 6.4. Image of two points: two dimensional; 6.5. Conclusions -- Chapter 7. Image formation: the transfer function.7.1 Introduction; 7.2 Image of a cosinusoidal intensity distribution; 7.3 Periodic real object; 7.4 The transfer function and the aperture function; 7.5 Conclusion -- Chapter 8. Image formation in terms of the transfer function. 8.1. Introduction; 8.2. The transfer function; 8.3. Image of a Ronchi ruling; 8.4. Defocused lens; 8.5. Appendix: Fourier transform of a Dirac comb. Chapter 9. Fresnel diffraction. 9.1. Introduction; 9.2. Fresnel diffraction: near field; 9.3. Fresnel's integrals; 9.4. Fresnel diffraction by a rectangular aperture; 9.5. Fresnel diffraction by a straight edge; 9.6. Fresnel diffraction by a circular aperture -- Chapter 10. Heuristic introduction to partially coherent light. 10.1. Introduction; 10.2. Partially coherent light; 10.3. Conclusions -- Chapter 11. Elementary theory of optical coherence: Part I. 11.1. Introduction; 11.2. Elements of classical coherence theory; 11.3. Review of the theory of partial coherence; References -- Chapter 12. Image formation with coherent light.12.1. Introduction; 12.2. The measurement of intensity; 12.3. Addition of optical fields; 12.4. The imaging problem; 12.5. The amplitude impulse response; 12.6. The amplitude transfer function; 12.7. Conclusions; References -- Chapter 13. Coherent imaging. resolution. 13.1. Introduction; 13.2. Image of a two-point object; 13.3. One-dimensional system; 13.4. Discussion: one-dimensional system; 13.5. Two-dimensional system; 13.6. Discussion: two-dimensional system; 13.7. Conclusions; References -- Chapter 14. Coherent imaging: examples. 14.1. Introduction; 14.2. Image of an edge object; 14.3. Image of a slit object; 14.4. Reflected light imaging; 14.5. Conclusions; References. Chapter 15. Coherence theory solution to the pinhole camera. 15.1. Introduction; 15.2. Pinhole camera with incoherent illumination; 15.3. Pinhole camera with coherent illumination; 15.4. Conclusions; 15.5. Appendix: Transfer function of the pinhole camera; References -- Chapter 16. Diffraction and interference with partially coherent light. 16.1. Introduction; 16.2. Diffraction with partially coherent light; 16.3. One-dimensional apertures; 16.4. Two-dimensional apertures; 16.5. Multiple-beam interference with partially coherent light; 16.6. Analysis of a partially coherently illuminated array; References -- Chapter 17. Elementary theory of optical coherence: Part II. 17.1. Examples of spatial coherence effects in optical instruments; References -- Chapter 18. Elementary theory of optical coherence: Part III. 18.1. An empirical approach for use in optical instrument design; 18.2. Coherent imaging systems; 18.3. Temporal coherence considerations in optical system design; 18.4. Summary; References -- Chapter 19. Selected criteria for image analysis. 19.1. Introduction; 19.2. Image formation; 19.3. Image quality criteria; 19.4. Discussion; References -- Chapter 20. Photographic films. 20.1. Introduction; 20.2. Review of photographic films; 20.3. Appendix: derivation of the relationship between (S/N)D and (S/N)E; References. Chapter 21. Sources of coherent noise and their reduction. 21.1. Introduction; 21.2. System noise considerations in coherent optical systems; 21.3. Speckle noise reduction techniques; 21.4. Design considerations for coherent optical systems; References.-- Chapter 22. Division of wavefront interferometry. 22.1. Introduction; 22.2. Array theorem; 22.3. Examples of division of wavefront inerferometry; References.-- Chapter 23. Division of amplitude interferometry. 23.1. Introduction; 23.2. General analysis; 23.3. Case I: Wavefront preserving interferometry for holograms; 23.4. Case II: Wavefront measuring interferometers; 23.5. Case III: Michelson interferometer with variable delay; 23.6. Case IV: Shearing interferometry; References -- Chapter 24. Multiple-Beam Interference. 24.1. Introduction; 24.2. Analysis; 24.3. Visibility of the fringes of an N-beam interferometer; 24.4. Additional characteristics of multiple-beam interferometers; 24.5. Chromatic resolving power of a multiple-beam interferometer; 24.6. Fabry-Perot interferometry; References -- Chapter 25. Introduction to holography. 25.1. Introduction; 25.2. Reconstruction of a two-beam interferogram; 25.3. Reconstruction of ideal two-beam interferograms; 25.4. Basic description of a two-beam hologram; 25.5. Formation and reconstruction of a Fourier transform hologram; 25.6. Other comments on Fourier transform holograms; 25.7. Types of holograms; 25.8. Simplified three-dimensional holography; 25.9. Fresnel and Fraunhofer holography; 25.10. Space bandwidth product of a Fresnel hologram; References. Chapter 26. Holographic interferometry. 26.1. Introduction; 26.2. Basic objective and the advantages of holographic interferometry; 26.3. Types of holographic interferometry; 26.4. Simple holographic interferometer analysis; 26.5. Double-exposure holographic interferometry; 26.6. Differential or time-lapse double-exposure holographic interferometry; 26.7. Single-exposure (real-time) holographic interferometry; 26.8. Multiple-exposure or time-average holographic interferometry; 26.9. Multiple-wavelength holography for contouring; 26.10. Computer-generated holographic interferometry; 26.11. Conclusions; References -- Chapter 27. Applications of holography. 27.1. Introduction; 27.2. Image formation; 27.3. Holographic optical elements; 27.4. Conclusions; 27.5. Appendix: Miscellaneous terminology; 27.6. Appendix: Interference microscopy; References -- Chapter 28. Communication theory techniques in optics. 28.1. Introduction; 28.2. Sampling theorem; 28.3. Statistical description of random samples; References -- Chapter 29. Analog optical computing: experimental Fourier analysis. 29.1. Introduction; 29.2. Optical Fourier transforms; 29.3. Slit aperture; 29.4. Periodic rectangular apertures; 29.5. Optical addition; 29.6. Optical convolution; 29.7. Optical spectrum replication by multiplication; 29.8. Appendix: Fourier transform of a rectangular wave; References. Chapter 30. Analog optical computing: fourier synthesis utilizing amplitude filters. 30.1. Generalized optical system for fourier filtering; 30.2. Multiplication with binary filter functions; 30.3. Object replication as an example of multiplication with a periodic binary filter; 30.4. Optical subtraction by multiplication with a periodic amplitude filter; References -- Chapter 31. Analog optical computing: Fourier synthesis utilizing amplitude and/or phase filters. 31.1. Optical division; 31.2. Case I: real filters; 31.3. Case II: purely imaginary inverse filters; 31.4. Case III: complex inverse filters; References -- Chapter 32. Analog optical computing: additional mathematical operations. 32.1. Fresnel transform; 32.2. Mellin transform; 32.3. Differentiation and integration of optical signals; References -- Chapter 33. Analog optical computing: optical correlation techniques. 33.1. Introduction; 33.2. Incoherent light correlation; 33.3. Coherent light correlation; 33.4. True one-dimensional, multichannel correlation system; References -- Chapter 34. Optically modulated imagery. 34.1. Introduction; 34.2. The concept of carrier-modulated imaging; 34.3. Multiple image storage with angularly dependent carriers; 34.4. Encoding color images on black-and-white film; 34.5. Phase-modulated images; 34.6. The square-array-modulated image concept; 34.7. Image holography: three-dimensional image modulation; References. Chapter 35. Phase contrast imaging. 35.1. Introduction; 35.2. Phase contrast viewing methods; 35.3. Phase visualization by defocus and Schlieren techniques: nonlinear methods; 35.4. Phase contrast imaging with extended linearity; 35.5. Conclusions; 35.6. Appendix: Imaging with an oblique illumination double-sideband p
ISBN 9780819481030 (electronic) , 0819401307 (print) , 9780819401304 (print)
기타 표준번호 10.1117/3.2303
QR CODE

책소개

전체보기

목차

전체보기

홈으로
닫기