내용 |
Chapter 1. Geometrical optics -- Coordinate system and notation -- The rectilinear propagation of light -- Snell's law -- Fermat's principle -- Rays and wavefronts, the theorem of Malus and Dupin -- Stops and pupils -- Marginal and chief rays -- Entrance and exit pupils -- Field stops -- Surfaces -- Spheres -- Quadrics of revolution (paraboloids, ellipsoids, hyperboloids) -- Oblate ellipsoid -- The hyperbola -- Axicon -- References -- Chapter 2. Paraxial optics -- Paraxial rays -- The sign convention -- The paraxial region -- The cardinal points -- Principal points -- Nodal points -- Paraxial properties of a single surface -- Paraxial ray tracing -- Discussion of the use of paraxial ray trace equations -- The Lagrange invariant -- Transverse (lateral) magnification -- Afocal systems and angular magnification -- Newton's conjugate distance equation -- Further discussion of the cardinal points -- The combination of two lenses -- The thick lens -- System of several elements -- The refraction invariant, A -- Other expressions for the Lagrange invariant -- The eccentricity, E -- The determination of E -- References -- Chapter 3. Ray tracing -- Introduction -- A simple trigonometric method of tracing meridian rays -- The vector form of Snell's law -- Definition of direction cosines -- Ray tracing (algebraic method) -- Precision -- Calculation of wavefront aberration (optical path difference) -- Ray tracing through aspheric and toroidal surfaces -- Decentered and tilted surfaces -- Ray tracing at reflecting surfaces -- References.
Chapter 4. Aberrations -- The relationship between transverse and wavefront aberrations -- Ray aberration plots -- Spot diagrams -- Aberrations of centered optical systems -- First-order aberrations -- Defocus -- Lateral image shift -- The five monochromatic third-order (Seidel) aberrations -- Spherical aberration -- Coma -- Astigmatism and field curvature -- Distortion -- The finite conjugate case -- The infinite conjugate case -- The afocal case -- Effect of pupil aberrations and defocus on -- Distortion -- F-theta lenses -- Effect of a curved object on distortion -- Higher-order aberrations -- Balancing spherical aberration -- Balancing coma -- Balancing astigmatism and field curvature -- Balancing distortion -- Modulation transfer function (MTF) -- Theory -- The geometrical approximation -- Practical calculation -- The diffraction limit -- References -- Chapter 5. Chromatic aberration -- Variation of refractive index, dispersion -- Longitudinal chromatic aberration (axial color) of a thin lens -- The Abbe V-value -- Secondary spectrum -- Transverse chromatic aberration (lateral color) -- The Conrady method for calculation of chromatic aberration -- Chromatic variation of aberrations -- References.
Chapter 6. Seidel aberrations -- Introduction -- Seidel surface contributions -- Spherical aberration -- Off-axis Seidel aberrations -- Alternative formula for distortion -- Aberrations of a plano-convex singlet -- First-order axial color and lateral color -- Summary of the Seidel surface coefficients -- A numerical example -- Stop-shift effects -- Derivation of the Seidel stop-shift equations -- Dependence of the Seidel aberrations on surface curvature -- The aplanatic surface -- An example: the classical oil-immersion microscope -- Objective -- Zero Seidel conditions -- "Undercorrected" and "overcorrected" aberrations -- Seidel aberrations of spherical mirrors -- Seidel aberration relationships -- Wavefront aberrations -- Transverse ray aberrations -- The Petzval sum and the Petzval surface -- The Petzval surface and astigmatic image surfaces -- Pupil aberrations -- Conjugate-shift effects -- References.
Chapter 7. Principles of lens design -- Thin lenses -- Thin lens at the stop -- Spherical aberration -- Coma -- Astigmatism -- Field curvature -- Distortion -- Axial color -- Lateral color -- Discussion of the thin-lens Seidel aberrations -- Spherical aberration -- Bending for minimum spherical aberration -- Effect of refractive index -- Effect of change of conjugates -- Correction of spherical aberration with two positive -- Lenses -- Correction of spherical aberration with positive and -- Negative lenses -- Seidel aberrations of thin lenses not at the stop -- Correction of coma -- Correction of astigmatism -- Correction of field curvature -- Different refractive indices -- Separated lenses -- Thick meniscus lens -- Reduction of aberrations by splitting lenses into two -- Seidel aberrations of a thin lens that is not at the stop -- Correction of axial and lateral color -- Shape-dependent and shape-independent aberrations -- Aspheric surfaces -- Third-order off-axis aberrations of an aspheric plate -- Chromatic effects -- The sine condition -- Sine condition in the finite conjugate case -- The sine condition with the object at infinity -- The sine condition for the afocal case -- Other design strategies -- Monocentric systems -- Use of front-to-back symmetry -- References.
Chapter 8. Achromatic doublet objectives -- Seidel analysis -- Correction of chromatic aberration -- Astigmatism and field curvature -- Comparison with the actual aberrations of a doublet -- Correcting both Petzval sum and axial color in doublets -- Possibilities of aberration correction in doublets -- The cemented doublet -- Optimization of cemented doublets -- Crown-first doublet -- Flint-first doublet -- The split doublet -- The split Fraunhofer doublet -- The split Gauss doublet -- General limitations of doublets -- Chapter 9. Petzval lenses and telephoto objectives -- Seidel analysis -- Calculation of predicted transverse aberrations from Seidel -- Coefficients -- Optimization -- Examples -- Simple Petzval lens with two doublets -- Petzval lens with curved image surface -- Petzval lens with field flattener -- The telephoto lens -- Chapter 10. Triplets -- Seidel theory -- Example of an optimized triplet -- Glass choice -- Vignetting.
Chapter 11. Eyepieces and afocal systems -- Eyepieces, design considerations -- Specification of an eyepiece -- Focal length -- Field angle -- Pupil diameter -- Exit pupil position ("eye relief") -- Aberration considerations -- Prism aberrations -- Pupil spherical aberration -- Distortion -- Field curvature -- Special factors in optimization -- General comments on eyepieces -- Simple eyepiece types -- The Ramsden eyepiece -- The achromatized Ramsden, or Kellner, eyepiece -- The Ploessl eyepiece -- The Erfle eyepiece -- Afocal systems for the visible waveband -- Simple example of a complete telescopic system -- More complex example of a telescopic system -- Galilean telescopes -- Magnifiers -- References -- Chapter 12. Thermal imaging lenses -- Photon detection -- 8- to 13- um waveband -- 3- to 5- um waveband -- Single-material lenses -- Single germanium lens -- Germanium doublets -- Plus-minus germanium doublet solution -- Plus-plus germanium doublet solution -- Germanium Petzval lens -- Germanium triplet -- Multiple-material lenses -- Infrared afocal systems -- The objective -- The eyepiece -- Optimization and analysis -- Other aspects of thermal imaging -- Narcissus effect -- Thermal effects -- Special optical surfaces -- References.
Chapter 13. Catadioptric systems -- General considerations -- Reminder of Seidel theory, spherical aberration, S1 -- Correction of field curvature, S4 -- General topics relating to computations with catadioptric systems -- Baffles -- Simple examples -- Cassegrain telescope -- Field corrector for a Cassegrain telescope -- Coma corrector for a paraboloidal mirror -- Field corrector for a paraboloidal mirror -- The Ritchey-Chr?tien telescope -- Field corrector for a Ritchey-Chr?tien telescope -- Field corrector for a hyperbolic mirror -- Schmidt camera -- The achromatized Schmidt camera -- The field-flattened Schmidt camera -- The Maksutov-Bouwers Cassegrain system -- A simple Mangin mirror system by Wiedemann -- More complex examples -- Canzek Mangin system -- Mirror telephoto lens -- References -- Index.
|