서지주요정보
Multimedia Cloud Computing Systems [electronic resource]
서명 / 저자 Multimedia Cloud Computing Systems [electronic resource] / by Mohsen Amini Salehi, Xiangbo Li.
저자명 Salehi, Mohsen Amini. author. aut http://id.loc.gov/vocabulary/relators/aut
Li, Xiangbo. author. aut http://id.loc.gov/vocabulary/relators/aut
단체명 SpringerLink (Online service)
발행사항 Cham : Springer International Publishing : Imprint: Springer, 2021.
Online Access https://doi.org/10.1007/978-3-030-88451-2 URL

서지기타정보

서지기타정보
청구기호 QA76.575
판사항 1st ed. 2021.
형태사항 XV, 187 p. 56 illus., 49 illus. in color. online resource.
언어 English
내용 1 Introduction -- 1.1 Overview -- 1.2 Multimedia Streaming and Cloud Computing -- 1.3 The Essence of this Book -- 1.4 Characteristics of the Multimedia Streaming Cloud (MSC) -- 1.4.1 Quality of Experience (QoE) in the MSC Platform -- 1.4.2 Robustness of the MSC Platform -- 1.4.3 Function-as-a-Service and Serverless Computing in the MSC Platform -- 1.5 A Bird-Eye View of the Multimedia Streaming Cloud (MSC) -- Platform -- References -- 2 Demystifying Multimedia StreamingWorkflow -- 2.1 Overview. -2.2 Video Streaming Types -- 2.3 Video Transcoding -- 2.3.1 Bit Rate -- 2.3.2 Resolution -- 2.3.3 Frame Rate -- 2.3.4 Codec -- 2.4 Video Delivery -- 2.4.1 Packaging -- 2.4.2 Encryption. -2.4.3 Streaming Protocols -- 2.5 Content Delivery Network (CDN) -- 2.6 Video Playback.-2.7 Summary -- References -- xi -- xii Contents -- 3 Multimedia Cloud: Designing a Special-Purpose Cloud platform for Interactive Multimedia Streaming -- 3.1 Overview. -3.2 Characterizing the Multimedia Streaming Cloud (MSC) Environment -- 3.2.1 Stakeholders of MSC -- 3.2.2 Characteristics of Multimedia Streaming Tasks -- 3.2.3 Uncertainty -- 3.3 Architecture of the Multimedia Streaming Cloud (MSC) Platform -- 3.3.1 Object-as-a-Service (OaaS) Abstraction in the MSC Platform -- 3.3.2 Enabling Object-as-a-Service (OaaS) Abstraction in the MSC Platform -- 3.3.3 Enabling Live Object Migration -- 3.3.4 Single Pane of Glass to Objects in MSC -- 3.4 Summary -- References -- 4 Applications of Multimedia Clouds -- 4.1 Overview -- 4.2 Multimedia Streaming Types -- 4.2.1 On-Demand Multimedia Streaming -- 4.2.2 Live Multimedia Streaming -- 4.2.3 Live-to-VOD Streaming -- 4.2.4 Differences in Processing Live and VOD Streaming -- 4.3 Basic Services Offered by MSC -- 4.3.1 Multimedia Content Transcoding. -4.3.2 Video Packaging -- 4.3.3 Analytical Services of Multimedia Streaming -- 4.4 Advanced Services Offered by MSC -- 4.4.1 Smart (AI-based) Multimedia Streaming Services -- 4.4.2 Augmented Reality (AR) and Virtual Reality (VR) Streaming -- 4.4.3 Holographic Multimedia Streaming -- 4.4.4 360_ Multimedia Streaming -- 4.5 Summary -- References. -5 Computing Infrastructure for Multimedia Streaming Clouds (MSC) -- 5.1 Overview -- 5.2 Virtualization Platforms for MSC -- 5.2.1 Case-Study: Appropriate Virtualization Platform for Multimedia Processing Using FFmpeg,- 5.3 Heterogeneous Computing for Multimedia Streaming Clouds (MSC) -- 5.3.1 Heterogeneous Resource Provisioning in MSC -- 5.3.2 Case-Study: Performance Analysis of Video Transcoding Operations on Heterogeneous Cloud VMs -- Contents xiii -- 5.4 Performance-Cost Trade-Off of Multimedia Processing on Heterogeneous Cloud VMs -- 5.4.1 Modeling Performance versus Cost Trade-Off of Transcoding Tasks on Heterogeneous VMs -- 5.4.2 Case Study of the Cost Performance Trade-Off Model -- 5.5 Scheduling of Multimedia Segments on Heterogeneous Machines -- in MSC 81 5.5.1 QoS-Aware Multimedia Task Scheduler -- 5.5.2 Self-Configurable Heterogeneous VM Provisioner -- 5.6 Case-Study: Making use of Heterogeneous Computing in Live-Streaming Industry -- 5.7 Summary -- References -- 6 Service Reuse in Multimedia Clouds -- 6.1 Overview -- 6.2 Is Function Aggregation (Merging) Beneficial? A Case-Study on Video Transcoding -- 6.2.1 Introducing Video Benchmark Dataset -- 6.2.2 Case-Study: Benchmarking Execution-Time of Video Transcoding Tasks -- 6.2.3 Analyzing the Impact of Merging Video Tasks -- 6.3 Predicting the Execution-Time Saving of Aggregating Functions -- 6.3.1 A Model to Predict Execution-Time Saving -- 6.3.2 Gradient Boosting Decision Tree (GBDT) to Predict the Execution-Time Saving -- 6.3.3 Performance Evaluation of the Execution-Time Saving Predictor -- 6.4 Function Aggregation in the Admission Control Unit of MSC -- 6.5 Task Similarity Detection -- 6.5.1 Categories of Mergeable Tasks -- 6.5.2 Detecting Tasks of Similar Functions -- 6.6 Identifying Merging Appropriateness -- 6.6.1 Overview -- 6.6.2 Evaluating the Impact of Merging -- 6.6.3 Positioning Aggregated Tasks in the Scheduling Queue -- 6.7 Adapting Merging based on the Oversubscription Level -- 6.7.1 Overview -- 6.7.2 Quantifying Oversubscription in the MSC Platform -- 6.7.3 Adaptive Task Merging Aggressiveness -- 6.8 Summary and Discussion -- References -- xiv Contents -- 7 Low-Latency Delivery Networks for Multimedia Streaming -- 7.1 Overview -- 7.2 Content Delivery Networks (CDN) -- 7.3 Peer to Peer (P2P) Networks -- 7.4 Fog Delivery Networks (FDN) versus Content Delivery Networks (CDN -- 7.4.1 Federated Fog Delivery Networks (F-FDN) -- 7.4.2 Efficient Operation of F-FDN -- 7.4.3 Introducing Different Streaming Delivery Methods for Evaluation -- 7.4.4 Evaluation of Stream Delivery Methods -- 7.5 Streaming Protocols -- 7.6 Case-Study: Low-Latency Streaming in Practice -- 7.7 Summary -- References -- 8 Other Aspects of Multimedia Clouds -- 8.1 Domain-Specific Billing -- 8.2 Networking of the Multimedia Streaming Clouds.-- 8.3 Security of Multimedia Streaming -- 8.3.1 Privacy -- 8.3.2 Digital Rights Management -- 8.4 Storage Service for Multimedia Contents -- 8.4.1 Cloud Storage for Multimedia Streaming -- 8.5 Summary -- References -- 9 Prototype Implementation of the MSC Platform -- 9.1 Overview -- 9.2 Serverless Computing Paradigm in Practice -- 9.3 A Use Case for the MSC Platform -- 9.4 Characteristics of Multimedia Stream Processing -- 9.5 Architecture of the MSC Prototype Implementation -- 9.5.1 Media Repository -- 9.5.2 Service Repository -- 9.5.3 Request Ingestion -- 9.5.4 Task Admission Control -- 9.5.5 Task Queue -- 9.5.6 Task Scheduler -- 9.5.7 Task Execution Time Estimator -- 9.5.8 Execution Engine -- 9.5.9 Provisioning Manager and Elasticity Manager -- 9.5.10 Stream Manager -- 9.5.11 Media Caching -- 9.6 Performance Evaluation -- Contents xv -- 9.6.1 Experimental setup -- 9.6.2 Evaluating Task Execution Unit Configurations -- 9.6.3 Evaluating Scheduling Policy -- 9.7 Summary -- References -- 10 Future of Multimedia Streaming and Cloud Technology -- 10.1 Overview -- 10.2 Application-Specific Integrated Circuits (ASICs) in Domain-Specific Clouds -- 10.3 Efficient Scheduling of Functions on Heterogeneous Machines -- 10.4 Supporting both Live and On-Demand Multimedia Streaming on the same Underlying Resources -- 10.5 Blockchain Technology for Multimedia Streaming -- 10.6 Reuse and Approximate Computing of Functions in Multimedia Clouds and other Domain-Specific Clouds -- 10.7 Machine Learning for Multimedia Processing -- 10.8 Avoiding Bias in MSC and Other Domain-Specific Clouds -- 10.9 Dependability of Cloud-based Multimedia Streaming -- References .
주제 Multimedia systems.
Mobile computing.
Information storage and retrieval systems.
Multimedia Information Systems.
Mobile Computing.
Information Storage and Retrieval.
보유판 및 특별호 저록 Springer Nature eBook
Printed edition: 9783030884505 Printed edition: 9783030884529 Printed edition: 9783030884536
ISBN 9783030884512
기타 표준번호 10.1007/978-3-030-88451-2
QR CODE

책소개

전체보기

목차

전체보기

홈으로
닫기