청구기호 |
TK7875 .L58 2012 |
판사항 |
2nd ed.
|
형태사항 |
1 online resource (577 pages)
|
언어 |
English |
내용 |
Cover -- CONTENTS -- PREFACE -- A NOTE TO INSTRUCTORS -- ABOUT THE AUTHOR -- Chapter 1 Introduction -- 1.0 Preview -- 1.1 The History of MEMS Development -- 1.1.1 From the Beginning to 1990 -- 1.1.2 From 1990 to 2001 -- 1.1.3 2002 to Present -- 1.1.4 Future Trends -- 1.2 The Intrinsic Characteristics of MEMS -- 1.2.1 Miniaturization -- 1.2.2 Microelectronics Integration -- 1.2.3 Parallel Fabrication with Precision -- 1.3 Devices: Sensors and Actuators -- 1.3.1 Energy Domains and Transducers -- 1.3.2 Sensors Considerations -- 1.3.3 Sensor Noise and Design Complexity -- 1.3.4 Actuators Considerations -- Summary -- Problems -- References -- Chapter 2 First-Pass Introduction to Microfabrication -- 2.0 Preview -- 2.1 Overview of Microfabrication -- 2.2 Essential Overview of Frequently Used Microfabrication Processes -- 2.2.1 Photolithography -- 2.2.2 Thin Film Deposition -- 2.2.3 Thermal Oxidation of Silicon -- 2.2.4 Wet Etching -- 2.2.5 Silicon Anisotropic Etching -- 2.2.6 Plasma Etching and Reactive Ion Etching -- 2.2.7 Doping -- 2.2.8 Wafer Dicing -- 2.2.9 Wafer Bonding -- 2.3 The Microelectronics Fabrication Process Flow -- 2.4 Silicon-Based MEMS Processes -- 2.5 Packaging and Integration -- 2.5.1 Integration Options -- 2.5.2 Encapsulation -- 2.6 New Materials and Fabrication Processes -- 2.7 Process Selection and Design -- 2.7.1 Points of Consideration for Deposition Processes -- 2.7.2 Points of Consideration for Etching Processes -- 2.7.3 Ideal Rules for Building a Process Flow -- 2.7.4 Rules for Building a Robust Process -- Summary -- Problems -- References -- Chapter 3 Review of Essential Electrical and Mechanical Concepts -- 3.0 Preview -- 3.1 Conductivity of Semiconductors -- 3.1.1 Semiconductor Materials -- 3.1.2 Calculation of Charge Carrier Concentration -- 3.1.3 Conductivity and Resistivity -- 3.2 Crystal Planes and Orientations.
3.3 Stress and Strain -- 3.3.1 Internal Force Analysis: Newton's Laws of Motion -- 3.3.2 Definitions of Stress and Strain -- 3.3.3 General Scalar Relation Between Tensile Stress and Strain -- 3.3.4 Mechanical Properties of Silicon and Related Thin Films -- 3.3.5 General Stress-Strain Relations -- 3.4 Flexural Beam Bending Analysis Under Simple Loading Conditions -- 3.4.1 Types of Beams -- 3.4.2 Longitudinal Strain Under Pure Bending -- 3.4.3 Deflection of Beams -- 3.4.4 Finding the Spring Constants -- 3.5 Torsional Deflections -- 3.6 Intrinsic Stress -- 3.7 Dynamic System, Resonant Frequency, and Quality Factor -- 3.7.1 Dynamic System and Governing Equation -- 3.7.2 Response Under Sinusoidal Resonant Input -- 3.7.3 Damping and Quality Factor -- 3.7.4 Resonant Frequency and Bandwidth -- 3.8 Active Tuning of Spring Constant and Resonant Frequency -- 3.9 A List of Suggested Courses and Books -- Summary -- Problems -- References -- Chapter 4 Electrostatic Sensing and Actuation -- 4.0 Preview -- 4.1 Introduction to Electrostatic Sensors and Actuators -- 4.2 Parallel-Plate Capacitor -- 4.2.1 Capacitance of Parallel Plates -- 4.2.2 Equilibrium Position of Electrostatic Actuator under Bias -- 4.2.3 Pull-in Effect of Parallel-Plate Actuators -- 4.3 Applications of Parallel-Plate Capacitors -- 4.3.1 Inertia Sensor -- 4.3.2 Pressure Sensor -- 4.3.3 Flow Sensor -- 4.3.4 Tactile Sensor -- 4.3.5 Parallel-Plate Actuators -- 4.4 Interdigitated Finger Capacitors -- 4.5 Applications of Comb-Drive Devices -- 4.5.1 Inertia Sensors -- 4.5.2 Actuators -- Summary -- Problems -- References -- Chapter 5 Thermal Sensing and Actuation -- 5.0 Preview -- 5.1 Introduction -- 5.1.1 Thermal Sensors -- 5.1.2 Thermal Actuators -- 5.1.3 Fundamentals of Thermal Transfer -- 5.2 Sensors and Actuators Based on Thermal Expansion -- 5.2.1 Thermal Bimorph Principle.
5.2.2 Thermal Actuators with a Single Material -- 5.3 Thermal Couples -- 5.4 Thermal Resistors -- 5.5 Applications -- 5.5.1 Inertia Sensors -- 5.5.2 Flow Sensors -- 5.5.3 Infrared Sensors -- 5.5.4 Other Sensors -- Summary -- Problems -- References -- Chapter 6 Piezoresistive Sensors -- 6.0 Preview -- 6.1 Origin and Expression of Piezoresistivity -- 6.2 Piezoresistive Sensor Materials -- 6.2.1 Metal Strain Gauges -- 6.2.2 Single Crystal Silicon -- 6.2.3 Polycrystalline Silicon -- 6.3 Stress Analysis of Mechanical Elements -- 6.3.1 Stress in Flexural Cantilevers -- 6.3.2 Stress and Deformation in Membrane -- 6.4 Applications of Piezoresistive Sensors -- 6.4.1 Inertial Sensors -- 6.4.2 Pressure Sensors -- 6.4.3 Tactile Sensor -- 6.4.4 Flow Sensor -- Summary -- Problems -- References -- Chapter 7 Piezoelectric Sensing and Actuation -- 7.0 Preview -- 7.1 Introduction -- 7.1.1 Background -- 7.1.2 Mathematical Description of Piezoelectric Effects -- 7.1.3 Cantilever Piezoelectric Actuator Model -- 7.2 Properties of Piezoelectric Materials -- 7.2.1 Quartz -- 7.2.2 PZT -- 7.2.3 PVDF -- 7.2.4 ZnO -- 7.2.5 Other Materials -- 7.3 Applications -- 7.3.1 Inertia Sensors -- 7.3.2 Acoustic Sensors -- 7.3.3 Tactile Sensors -- 7.3.4 Flow Sensors -- 7.3.5 Surface Elastic Waves -- Summary -- Problems -- References -- Chapter 8 Magnetic Actuation -- 8.0 Preview -- 8.1 Essential Concepts and Principles -- 8.1.1 Magnetization and Nomenclatures -- 8.1.3 Selected Principles of Micro Magnetic Actuators -- 8.2 Fabrication of Micro Magnetic Components -- 8.2.1 Deposition of Magnetic Materials -- 8.2.2 Design and Fabrication of Magnetic Coil -- 8.3 Case Studies of MEMS Magnetic Actuators -- Summary -- Problems -- References -- Chapter 9 Summary of Sensing and Actuation Methods -- 9.0 Preview -- 9.1 Comparison of Major Sensing and Actuation Methods.
9.2 Other Sensing and Actuation Methods -- 9.2.1 Tunneling Sensing -- 9.2.3 Optical Sensing -- 9.2.4 Field Effect Transistors -- 9.2.5 Radio Frequency Resonance Sensing -- Summary -- Problems -- References -- Chapter 10 Bulk Micromachining and Silicon Anisotropic Etching -- 10.0 Preview -- 10.1 Introduction -- 10.2 Anisotropic Wet Etching -- 10.2.1 Introduction -- 10.2.2 Rules of Anisotropic Etching-Simplest Case -- 10.2.3 Rules of Anisotropic Etching-Complex Structures -- 10.2.4 Forming Protrusions -- 10.2.5 Interaction of Etching Profiles from Isolated Patterns -- 10.2.6 Summary of Design Methodology -- 10.2.7 Chemicals for Wet Anisotropic Etching -- 10.3 Dry Etching and Deep Reactive Ion Etching -- 10.4 Isotropic Wet Etching -- 10.5 Gas Phase Etchants -- 10.6 Native Oxide -- 10.7 Special Wafers and Techniques -- Summary -- Problems -- References -- Chapter 11 Surface Micromachining -- 11.0 Preview -- 11.1 Basic Surface Micromachining Processes -- 11.1.1 Sacrificial Etching Process -- 11.1.2 Micro Motor Fabrication Process-A First Pass -- 11.2.3 Micro Motor Fabrication Process-A Second Pass -- 11.1.4 Micro Motor Fabrication Process-Third Pass -- 11.2 Structural and Sacrificial Materials -- 11.2.1 Material Selection Criteria for a Two-layer Process -- 11.2.2 Thin Films by Low Pressure Chemical Vapor Deposition -- 11.2.3 Other Surface Micromachining Materials and Processes -- 11.3 Acceleration of Sacrificial Etch -- 11.4 Stiction and Anti-stiction Methods -- Summary -- Problems -- References -- Chapter 12 Process Synthesis: Putting It All Together -- 12.0 Preview -- 12.1 Process for Suspension Beams -- 12.2 Process for Membranes -- 12.3 Process for Cantilevers -- 12.3.1 SPM Technologies Case Motivation -- 12.3.2 General Fabrication Methods for Tips -- 12.3.3 Cantilevers with Integrated Tips -- 12.3.4 Cantilevers with Integrated Sensors.
12.3.5 SPM Probes with Actuators -- 12.4 Practical Factors Affecting Yield of MEMS -- Summary -- Problems -- References -- Chapter 13 Polymer MEMS -- 13.0 Preview -- 13.1 Introduction -- 13.2 Polymers in MEMS -- 13.2.1 Polyimide -- 13.2.2 SU-8 -- 13.2.3 Liquid Crystal Polymer (LCP) -- 13.2.4 PDMS -- 13.2.5 PMMA -- 13.2.6 Parylene -- 13.2.7 Fluorocarbon -- 13.2.8 Other Polymers -- 13.3 Representative Applications -- 13.3.1 Acceleration Sensors -- 13.3.2 Pressure Sensors -- 13.3.3 Flow Sensors -- 13.3.4 Tactile Sensors -- Summary -- Problems -- References -- Chapter 14 Micro Fluidics Applications -- 14.0 Preview -- 14.1 Motivation for Microfluidics -- 14.2 Essential Biology Concepts -- 14.3 Basic Fluid Mechanics Concepts -- 14.3.1 The Reynolds Number and Viscosity -- 14.3.2 Methods for Fluid Movement in Channels -- 14.3.3 Pressure Driven Flow -- 14.3.4 Electrokinetic Flow -- 14.3.5 Electrophoresis and Dielectrophoresis -- 14.4 Design and Fabrication of Selective Components -- 14.4.1 Channels -- 14.4.2 Valves -- Summary -- Problems -- References -- Chapter 15 Case Studies of Selected MEMS Products -- 15.0 Preview -- 15.1 Case Studies: Blood Pressure (BP) Sensor -- 15.1.1 Background and History -- 15.1.2 Device Design Considerations -- 15.1.3 Commercial Case: NovaSensor BP Sensor -- 15.2 Case Studies: Microphone -- 15.2.1 Background and History -- 15.2.2 Design Considerations -- 15.2.3 Commercial Case: Knowles Microphone -- 15.3 Case Studies: Acceleration Sensors -- 15.3.1 Background and History -- 15.3.2 Design Considerations -- 15.3.3 Commercial Case: Analog Devices and MEMSIC -- 15.4 Case Studies: Gyros -- 15.4.1 Background and History -- 15.4.2 The Coriolis Force -- 15.4.3 MEMS Gyro Design -- 15.4.4 Single Axis Gyro Dynamics -- 15.4.5 Commercial Case: InvenSense Gyro -- 15.5 Summary of Top Concerns for MEMS Product Development.
15.5.1 Performance and Accuracy.
|
주제 |
Microelectromechanical systems.
|
보유판 및 특별호 저록 |
Print version: Liu, Chang Foundation of MEMA PDF EBook Harlow : Pearson Education, Limited,c2011 9780273752240
|
ISBN |
9781292013985, 9780273752240
|
QR CODE |
|