청구기호 |
QC174.12.B56 2014eb |
형태사항 |
1 online resource (407 pages)
|
언어 |
English |
내용 |
Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Origins -- 1.2 Measurements -- 1.2.1 Measurement involves disturbance -- Heisenberg microscope -- 1.2.2 Ideal measurements -- 1.2.3 Summary -- 1.3 Probability amplitudes -- 1.3.1 Two-slit interference -- 1.4 Quantum states -- 1.4.1 Observables -- Complete sets of amplitudes -- 1.4.2 Vector spaces and their duals -- 1.4.3 The energy representation -- 1.4.4 Polarisation of photons -- 1.5 Summary -- Problems -- 2 Operators, measurement and time evolution -- 2.1 Operators -- Functions of operators -- Commutators -- 2.2 Evolution in time -- 2.2.1 Evolution of expectation values -- 2.3 The position representation -- 2.3.1 Hamiltonian of a particle -- 2.3.2 Wavefunction for well-defined momentum -- The uncertainty principle -- 2.3.3 Dynamics of a free particle -- 2.3.4 Back to two-slit interference -- 2.3.5 Generalisation to three dimensions -- Probability current -- The virial theorem -- 2.4 Summary -- Problems -- 3 Oscillators -- 3.1 Stationary states of a harmonic oscillator -- 3.2 Dynamics of oscillators -- 3.2.1 Anharmonic oscillators -- Problems -- 4 Transformations and observables -- 4.1 Transforming kets -- 4.1.1 Translating kets -- 4.1.2 Continuous transformations and generators -- 4.1.3 The rotation operator -- 4.1.4 Discrete transformations -- The parity operator -- Mirror operators -- 4.2 Transformations of operators -- The parity operator -- Mirror operators -- 4.3 Symmetries and conservation laws -- 4.4 The Heisenberg picture -- 4.5 What is the essence of quantum mechanics? -- Problems -- 5 Motion in step potentials -- 5.1 Square potential well -- 5.1.1 Limiting cases -- Infinitely deep well -- Infinitely narrow well -- 5. 2 A pair of square wells -- 5.2.1 Ammonia -- The ammonia maser -- 5.3 Scattering of free particles -- The scattering cross-section.
5.3.1 Tunnelling through a potential barrier -- 5.3.2 Scattering by a classically allowed region -- 5.3.3 Resonant scattering -- The Breit-Wigner cross-section -- 5.4 How applicable are our results? -- 5.5 Summary -- Problems -- 6 Composite systems -- 6.1 Composite systems -- 6.1.1 Collapse of the wavefunction -- 6.1.2 Operators for composite systems -- 6.1.3 Development of entanglement -- 6.1.4 Einstein-Podolski-Rosen experiment -- Bell's inequality -- 6.2 Quantum computing -- 6.3 The density operator -- 6.3.1 Reduced density operators -- 6.3.2 Shannon entropy -- 6.4 Thermodynamics -- 6.5 Measurement -- Problems -- 7 Angular momentum -- 7.1 Eigenvalues of Jz and J2 -- 7.1.1 Rotation spectra of diatomic molecules -- 7.2 Spin and orbital angular momentum -- 7.2.1 Orbital angular momentum -- L as the generator of circular translations -- Spectra of L2 and Lz -- 7.2.2 Spin angular momentum -- 7.3 Physics of spin -- 7.3.1 Spin-half matrices -- 7.3.2 Spin-one matrices -- 7.3.3 The Stern-Gerlach experiment -- Stern-Gerlach experiment with spin-one atoms -- 7.3.4 Precession in a magnetic field -- 7.3.5 The classical limit -- 7.4 Orbital angular-momentum eigenfunctions -- 7.4.1 Orbital angular momentum and parity -- 7.4.2 Orbital angular momentum and kinetic energy -- 7.4.3 Legendre polynomials -- 7.5 Three-dimensional harmonic oscillator -- 7.6 Addition of angular momenta -- 7.6.1 Case of two spin-half systems -- 7.6.2 Case of spin-one and spin-half -- 7.6.3 The classical limit -- Problems -- 8 Hydrogen -- 8.1 Gross structure of hydrogen -- 8.1.1 Emission-line spectra -- 8.1.2 Radial eigenfunctions -- 8.1.3 Shielding -- 8.1.4 Expectation values for r−k -- 8.2 Fine structure and beyond -- 8.2.1 Spin-orbit coupling -- 8.2.2 Hyperfine structure -- Problems -- 9 Motion in a magnetic field -- 9.1 Hamiltonian for motion in a magnetic field.
9.1.1 Classical equations of motion -- 9.2 Gauge transformations -- 9.2.1 Probability current -- 9.3 Landau levels -- 9.3.1 Displacement of the gyrocentre -- 9.4 Aharonov-Bohm effect -- Problems -- 10 Perturbation theory -- 10.1 Time-independent perturbations -- 10.1.1 Quadratic Stark effect -- 10.1.2 Linear Stark effect and degenerate perturbation theory -- 10.1.3 Effect of an external magnetic field -- Paschen-Back effect -- Zeeman effect -- 10.2 Variational principle -- 10.3 Time-dependent perturbation theory -- 10.3.1 Fermi golden rule -- 10.3.2 Radiative transition rates -- 10.3.3 Selection rules -- Problems -- 11 Helium and the periodic table -- 11.1 Identical particles -- Generalisation to the case of N identical particles -- 11.1.1 Pauli exclusion principle -- 11.1.2 Electron pairs -- 11.2 Gross structure of helium -- 11.2.1 Gross structure from perturbation theory -- 11.2.2 Application of the variational principle to helium -- 11.2.3 Excited states of helium -- 11.2.4 Electronic configurations and spectroscopic terms -- Spectrum of helium -- 11. 3 The periodic table -- 11.3.1 From lithium to argon -- 11.3.2 The fourth and fifth periods -- Problems -- 12 Adiabatic principle -- 12.1 Derivation of the adiabatic principle -- 12.2 Application to kinetic theory -- 12.3 Application to thermodynamics -- 12.4 The compressibility of condensed matter -- 12. 5 Covalent bonding -- 12.5.1 A model of a covalent bond -- 12.5.2 Molecular dynamics -- 12.5.3 Dissociation of molecules -- 12. 6 The WKBJ approximation -- Problems -- 13 Scattering theory -- 13.1 The scattering operator -- 13.1.1 Perturbative treatment of the scattering operator -- 13.2 The S-matrix -- 13.2.1 The io prescription -- 13.2.2 Expanding the S-matrix -- 13.2.3 The scattering amplitude -- 13.3 Cross-sections and scattering experiments -- 13.3.1 The optical theorem.
13.4 Scattering electrons off hydrogen -- 13.5 Partial wave expansions -- 13.5.1 Scattering at low energy -- 13.6 Resonant scattering -- 13.6.1 Breit-Wigner resonances -- 13.6.2 Radioactive decay -- Problems -- Appendices -- Appendix A: The laws of probability -- Appendix B: Cartesian tensors -- Appendix C: Fourier series and transforms -- Appendix D: Operators in classical statistical mechanics -- Appendix E: Lie groups and Lie algebras -- Appendix F: The hidden symmetry of hydrogen -- Appendix G: Lorentz covariant equations -- Appendix H: Thomas precession -- Appendix I: Matrix elements for a dipole-dipole interaction -- Appendix J: Selection rule for j -- Appendix K: Restrictions on scattering potentials -- Index.
|
주제 |
Quantum theory.
|
보유판 및 특별호 저록 |
Print version: Binney, James The Physics of Quantum Mechanics Oxford : Oxford University Press, Incorporated,c2013 9780199688579
|
ISBN |
9780191002274, 9780199688579
|
QR CODE |
|