청구기호 |
Q350-390 |
판사항 |
1st ed. 2004.
|
형태사항 |
XXI, 441 p. online resource.
|
총서명 |
Information Technology: Transmission, Processing and Storage, 1389-6938
|
언어 |
English |
내용 |
Preface -- Notation -- 1. Error Source Models -- 1.1 Description of Error Sources by Hidden Markov Models -- 1.2 Binary Symmetric Stationary Channel -- 1.3 Error Source Description by Matrix Processes -- 1.4 Error Source Description by Semi-Markov Processes -- 1.5 Some Particular Error Source Models -- 1.6 Conclusion -- References -- 2. Matrix Probabilities -- 2.1 Matrix Probabilities and Their Properties -- 2.2 Matrix Transforms -- 2.3 Matrix Distributions -- 2.4 Markov Functions -- 2.5 Monte Carlo Method -- 2.6 Computing Scalar Probabilities -- 2.7 Conclusion -- References -- 3. Model Parameter Estimation -- 3.1 The Em Algorithm -- 3.2 Baum-Welch Algorithm -- 3.3 Markov Renewal Process -- 3.4 Matrix-Geometric Distribution Parameter Estimation -- 3.5 Matrix Process Parameter Estimation -- 3.6 Hmm Parameter Estimation -- 3.7 Monte Carlo Method of Model Building -- 3.8 Error Source Model in Several Channels -- 3.9 Conclusion -- References -- 4. Performance of Forward Error-Correction Systems -- 4.1 Basic Characteristics of One-Way Systems -- 4.2 Elements of Error-Correcting Coding -- 4.3 Maximum A Posteriori Decoding -- 4.4 Block Code Performance Characterization -- 4.5 Convolutional Code Performance -- 4.6 Computer Simulation -- 4.7 Zero-Redundancy Codes -- 4.8 Conclusion -- References -- 5. Performance Analysis of Communication Protocol -- 5.1 Basic Characteristics of Two-Way Systems -- 5.2 Return-Channel Messages -- 5.3 Synchronization -- 5.4 Arq Performance Characteristics -- 5.5 Delay-Constained Systems -- 5.6 Conclusion -- References -- 6. Continuous Time Hmm -- 6.1 Continuous and Discrete Time Hmm -- 6.2 Fitting Continuous Time Hmm -- 6.3 Conclusion -- References -- 7. Continuous State Hmm -- 7.1 Continuous and Discrete State Hmm -- 7.2 Operator Probability -- 7.3 Filtering, Prediction, and Smoothing -- 7.4 Linear Systems -- 7.5 Autoregressive Moving Average Processes -- 7.6 Parameter Estimation -- 7.7 Arma Channel Modeling -- 7.8 Conclusion -- References -- Appendix 1 -- 1.1 Matrix Processes -- 1.2 Markov Lumpable Chains -- 1.3 Semi-Markov Lumpable Chains -- References -- Appendix 2 -- 2.1 Asymptotic Expansion of Matrix Probabilities -- 2.2 Chernoff Bounds -- 2.3 Block Graphs -- References -- Appendix 3 -- 3.1 Statistical Inference -- 3.2 Markov Chain Model Building -- 3.3 Semi-Markov Process Hypothesis Testing -- 3.4 Matrix Process Parameter Estimation -- References -- Appendix 4 -- 4.1 Sums With Binomial Coefficients -- 4.2 Maximum-Distance-Separable Code Weight Generating Function -- 4.3 Union Bounds on Viterbi Algorithm Performance -- References -- Appendix 5 -- 5.1 Matrices -- References -- Appendix 6 -- 6.1 Markov Chains and Graphs -- References -- Appendix 7 -- 7.1 Markov Processes -- 7.2 Gauss-Markov Processes -- References.
|
주제 |
Information theory.
Computer communication systems.
Probabilities.
System theory.
Information and Communication, Circuits. --https://scigraph.springernature.com/ontologies/product-market-codes/M13038
Computer Communication Networks. --https://scigraph.springernature.com/ontologies/product-market-codes/I13022
Probability Theory and Stochastic Processes. --https://scigraph.springernature.com/ontologies/product-market-codes/M27004
Systems Theory, Control. --https://scigraph.springernature.com/ontologies/product-market-codes/M13070
|
보유판 및 특별호 저록 |
Springer Nature eBook
Printed edition: 9780306481918
Printed edition: 9781461347811
Printed edition: 9781441990716
|
ISBN |
9781441990709 |
기타 표준번호 |
10.1007/978-1-4419-9070-9 |
QR CODE |
|